• Biblioteca del Dipartimento di Bioingegneria del Politecnico di Milano

    Via C. Golgi, 39 (4.piano) 20133 Milano tel02/23993300 fax0223993329 Messenger:bibliobioingpolimi@hotmail.it Skype: bibliobioingpolimi Aggiungici al tuo iGoogle Add to Google Creative Commons License
    Questo/a opera è pubblicato sotto una Licenza Creative Commons
  • Le nostre dritte (del.icio.us)

  • I più letti

  • Foto @lla tua biblioteca

  • Archivi

  • Link più cliccati

    • Nessuna
  • Sono passati di qui...

    • 230,387 visitatori
  • Annunci

Le nostre pubblicazioni


Annals of Biomedical Engineering
Volume 34, Issue 4, April 2006, Pages 677-686
A neural network based method for optical patient set-up registration in breast radiotherapy

Frosio, I., Spadea, M., De Momi, E., Riboldi, M., Baroni, G., Ferrigno, G., Orecchia, R., Pedotti, A.

DOI: 10.1007/s10439-005-9069-1

Vedi il record in logo1.jpgPMID: 16496081



Patient set-up optimization is required in breast-cancer radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. Opto-electronic systems allow implementing automatic procedures to minimize the positional mismatches of light-reflecting markers located on the patient surface with respect to a corresponding reference configuration. The same systems are used to detect the position of the irradiated body surface by means of laser spots; patient set-up is then corrected by matching the control points onto a CT based reference model through surface registration algorithms. In this paper, a non-deterministic approach based on Artificial Neural Networks is proposed for the automatic, real-time verification of geometrical set-up of breast irradiation. Unlike iterative surface registration methods, no passive fiducials are used and true real-time performance is obtained. Moreover, the non-deterministic modeling performed by the neural algorithm minimizes sensitivity to intra-fractional and inter-fractional non-rigid motion of the breast. The technique was validated through simulated activities by using reference CT data acquired on four subjects. Results show that the procedure is able to detect and reduce simulated set-up errors and revealed high reliability in patient position correction, even when the surface deformation is included in testing conditions.

Author Keywords

Artificial neural networks; Breast; Radiotherapy; Surface matching



Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger hanno fatto clic su Mi Piace per questo: